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Rayleigh–Ritz Technique for Closed
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Abstract —Previous work in the application of the
Rayleigh-Ritz method to the analysis of closed dielectric wave-
guides has shown that if the modes of the homogeneous rectan-
gular waveguide are used to model the modes of an inhomoge-
neous rectangular waveguide, then it is numerically advanta-
geous to use an optimized value for the permittivity of the
homogeneous waveguide’s dielectric filling. The paper reformn-
Iates this work to use a complete set of basis functions. It is
shown that use of the E: /H2 formulation to describe the modes
of the homogeneous rectangular waveguide leads to a relative
convergence phenomena as well as to incorrect loss calculations.
The paper reformulates the method using an Et /EY /HX /HY
description of the homogeneous modes. The new formulation is
validated for step-index waveguides through non-perturbational
calculations of the propagation and attenuation constants of the
round step-index dielectric waveguide. Comparison with the
direct eigenvalue solution shows excellent agreement for the
dominant and three higher-order modes. The new formulation is
validated for graded-index waveguides through calculation of
the dispersion curves for three modes of a Gaussian-Gaussian
graded-index channel waveguide. Comparison of the results with
two other methods shows excellent agreement.

I. INTRODUCTION

IN A recent paper [1], this author detailed a modified
variational method designed to analyze arbitra~ closed

dielectric waveguides. The method uses the modes of the
homogeneously-filled rectangular waveguide (HRW) to
model the modes of the inhomogeneously-filled rectangu-
lar waveguide (IRW) in a variational expression for the
complex propagation constant. Following the classic
Rayleigh–Ritz technique, the variational expression is
then minimized with respect to the amplitude of each
HRW mode. The innovation described in the paper is to
allow the dielectric constant of the HRW filling to remain
variable so that the variational expression can also be
minimized with respect to it. This additional optimization
eliminates the difficulties with the Rayleigh–Ritz tech-
nique that had been previously observed [2]–[7], namely
slow convergence.
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The method of [1] uses the E. /H2 formulation to
derive the HRW modes. This selec~ion results in the use
of a basis set that is not complete, as discussed in [8]. It is
the purpose of this paper to reformulate the method to
use a complete set of basis functions and to numerically
prove the new formulation. The formulation based on the
incomplete basis set is also discussed as it exhibits inter-
esting numerical behavior that supports the new formula-
tion.

11. DISCUSSIONONMODALEXPANSIONS

As it seems that there is some confusion on the com-
pleteness of the modes of the HRW, it is worth a short
discussion even though the theory has already been de-
tailed [8]. This discussion will concentrate on an intuitive
explanation.

First, consider the physical scattering problem shown in
Fig. 1, where an HWR sees a discontinuity into an IRW.
If a single mode or multiple modes are incident onto the
interface from either waveguide, the interface scatters
energy into all higher-order modes in both waveguides so
that the total fields in each waveguide, given by the
superposition of all modes in that waveguide, satisfy the
boundary conditions at the interface. Therefore, the HRW
modes are complete in that they can exactly match any
field configuration produced by any IRW. In short, an
infinite sum of HRW modes can exactly match an infinite
sum of IRW modes.

The method presented in [1] attempts to match a single
IRW mode by an infinite sum of HRW modes, This
situation is not a physical problem as was the one above;
therefore, there is no guarantee that the infinite sum of
HRW modes can in fact match the desired fields. In
general for this case, the HRW modes are not complete,
so any formulation using HRW modes to model IRW
modes will result in some error.

The incompleteness of the E: /H: formulation can be
more explicitly explored with an alternative, more spe-
cific, argument. Following [9], the E,, EY, H,, and HY
field components can be written in terms of E= and HZ

0018-9480/91$01.00 01991 IEEE



YOUNG: OPTIMIZING RAYLEIGH-RITZ TECHNIQUE FOR CLOSED DIELECTRIC WAVEGUIDE ANALYSIS

x

kz

‘7Y

/

A’+ . . . . . . . . . .

7 Rectangular

Vaveguide

,
‘%.p

00.

Fig. 1. On the problem of scattering in a rectangular waveguide on transition from a homogeneously-filled section to an
inhomogeneously -filled section.

according to the following expressions:

(3)

Concentrating on EX as all components have similar
behavior, it can be seen from (1) that if ~ is real, as it is
for a propagating mode in a lossless HRW, then EX and
E= are 90° out of phase. If ~ is imaginaw, as it is for a
cutoff mode in lossless HRW, then E,t and EZ are in
phase (or 18@ out). The phase relationship for E,y and
H. is fixed at 90° out of phase. With these fixed relation-
ships, EX cannot take on an arbitrary phase with respect
to EZ and HZ as would be required to model an arbitrary
IRW. Therefore, the modes of the HRW are not com-
plete and cannot be used to exactly model a single mode
of the IRW. The fixed phase relationships can be allevi-
ated somewhat by using a 10SSYHRW, for which ~ is
complex. Later numerical examples demonstrate this ef-
fect.

111. IMPROVEDFORMULATION

The discussion in Section II demonstrates that the
E=/Hz formulation is not general enough to model an
arbitrary IRW due to the fixed phase relationships be-
tween field components. However, it is still desirable to
use the fields derived from a homogeneous structure to
model the IRW. To alleviate this problem, a formulation
is needed that allows for arbitrary phase relationships
between components. As indicated in “[8], it is not neces-

b
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Fig. 2. Generic inhomogeneously-filled rectangular waveguide (IIRW)
with rectangular subdivision in e and homogeneous in ~.

sary for each field component to have a separate eigen-
function expansion. From Maxwell’s equations with no
sources we have

4:-%)EZ=- (5)

(6)

so a SOIUIion with EX, EY, HX, and HY as variables would
allow arbitrary phase relationships to exist between com-
ponents as e and p are free to modify H= and EZ.
Another aspect of this approach is that the Maxwell
equation V“H = O is explicitly satisfied so that spurious
modes will not be generated.

For the homogeneous structure, all field components
must satisfy the Helmholtz equations

V2E + k;E = O (7)
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or

VZH+ k;H= 0, (8)

where kR = m~~ and ~R and ~R are complex con-
stants. The generic IRW structure for which a solution is
sought is shown in Fig. 2, where an inhomogeneous di-
electric with w = p ~ fills a rectangular perfectly conduct-
ing box. The HRW with the same outer box is chosen to
form the basis set, and with the PEC boundary condi-
tions, the general solutions to (7)-(8) for all but the
z-components are

where Ek~~, EY~., HX~., and HY~. are the unknown
expansion coefficients. Substituting (9)–(12) into (5)–(6)
yields

and

A suitable variational expression for the propagation
constant is given by [10] as

JJ(
WeE+” E– – wpH+” H

c

conductor (PEC). The formula remains stationary for the
10SSYcase, for which j~ is replaced by -y= a + j~. The
structure is defined through inhomogeneous e and p,
both of which can be complex to include loss.

The general field expressions in (9)-(14) satisfy the
requirements for use in (15), so the unknown fields in (15)
can be approximated by truncated expansions based on
(9)-(14). A matrix equation is formed by directly substi-
tuting (9)–(14) into (15) and applying the Rayleigh–Ritz
technique, where we set d~ /dA~. = O ‘ifmn for An.
equal to EX~., EY~., HY~., and HY~., a process that
entails considerable algebra. To alleviate the effort and to
minimize the chance of error, the derivation was pro-
grammed and solved using a symbolic manipulator [11].
As the intermediate results are not even available for
inspection, only the final results are presented, and they
appear in the Appendix as (20)–(23). AS indicated in Fig.
2, ~ for the IRW may be restricted to homogeneous
rectangular regions. This restriction allows all integrations
to be performed in closed form.

It is convenient for discussion to recast the equations in
matrix form. Defining the vectors:

EX={EYO1, EX02>..., J?.m.} ~

Jn=o,l ,..., L1,l, n=l,2,..., Ly

~y={Eylo, Eyll> ...> -EYt?ln} 7

m=l,2 Li, n= 0,1, . . ..L –1,. ... y

RX={ HXIO,HXI1,..., Hxmn} >
m=l,2 L,. ... ~, n= O,l,..., Ll–l

RY={HYO1, HY02,...,
HYmn}~

m=O,l ,..., L1,l, n=l,2,..., Ly
and then

E=(E.Y, E,)

}
R={ RY, HX ,

then (20) and (21) can be recast as
A~ = ~~ (16)

i
+ jH-.V x E+ + jEq.V x H- ds

where

i )E+=l?+(x, y)e-Jpz= $,+u=l$= e-Jfiz

H+= fi+(x, y)e-JPZ =( fi, +uZfiz)e-’D’

E-=& (x, y)e~P’= [~, -uzl?=]eJD’

H-=& (x, y)eJP:= (-tif+u=flZ)eJP=.

This mixed-field formula requires only that n x E = O on
the contour of the waveguide, a requirement that the
waveguide cross section, S, be bound by a perfect electric

with (23) and (22) taking the form

B~ = ~~. ( 17)
Note that either ~ or ~ can be eliminated to cut the
order of the matrix solution in half. Eliminating ~ yields

BA~=~2~. (18)
Equation (18) is in the form of the standard eigenvalue
equation, an advantageous form since each solution rep-
resents one mode of the IRW (so all modes are available
with one calculation) and since numerically stable algo-
rithms exist for its solution.

It is interesting to compare the result here given by (18)
with the E=/Hz formulation from [1]. Both result in a
fully-dense standard eigenvalue equation in two sets of
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variables, even though the formulation here is originally
based on four sets, so the basic computational speed is
identical. However, in [1], the eigenvalues of the matrix
equation are given by ~, whereas in the formulation given
by (18), the eigenvalues are given by 92. So the computa-
tion time spent computing eigenvalues for waves traveling
in the negative z-direction, a direction not supported by
the underlying variational expression (15), is avoided in
the’ current formulation.

At this point, the dielectric filling of the HRW is still
undetermined. As discussed in [1], it is necessary to
choose CRand p~, the material parameters of the HRW,
appropriately so that the variational expression is mini-
mized, as was also done for E,,,,,,, Eymn, Hz,,,,,, and HYml,,.
Hence, it is required that d~/de~ = O and dp /dp~ = O.
In this work, K(x, y) = WOfor the IRW so it is sufficient
to set p~ = NO,leaving just one additional constraint. The
required derivative was also programmed and solved us-
ing a symbolic manipulator, and the result appears in the
Appendix as (24).

The final algorithm is then as follows. An initial guess
is made for ~~ and (18) is solved. One eigenvalue is
chosen, usually the one with the largest real part to get
the dominant mode, and its corresponding eigenvector is
set equal to ~. Equation (16) is used to compute ~. With
these ~ and ~, (24) is used to compute the derivative
d~ /,de~. Muller’s method is used to calculate an updated
.s~ and the process is repeated until d~ /d~~ = O. It is
important to note that because of the variational nature
of the problem, only one root exists.

IV. SOMEIMPLEMENTATIONNOTES

Various techniques are used to speed execution without
affecting the computational accuracy. Those discussed
below are the utilization of symmetry, selective mode
inclusion, and “recomputation. Symmetry is easily imple-
mented by including only even or odd terms in the modal
basis set. For symmetry in one direction, the number of
modes can be reduced by two resulting in a four times
speed improvement. Symmetry in both the x- and the
y-directions reduces the number of modes by four result-
ing in a sixteen times speed improvement.

Considerable speed improvement can also be obtained
by emphasizing lower- over higher-order modes. The spe-
cific implementation used here is to limit the modes to
those with indices that satisfy m + n < L +1, where L =
max(LX, Ly), resulting in a “triangular” set as opposed to
the “rectangular” set implied in the formulation given in
the Appendix.

There are two opportunities for precomputation. First,
it is noted that the matrix A in (18) does not depend on
ER, so it does not need to be recomputed for each
iteration in optimizing e~. The second opportunity lies
with the fact that all of the integrations required are
dependent only on the physical layout of the structure.
These can be precomputed for dramatic improvement in
speed.

r(““r’”)
—=—————

L— I

Fig. 3. Staircaseapproximationfor the round step-indexdielectric
waveguidebasedon a rectangularsubdivisionusing74 rectangles.Nu-
merical results use 122 rectangles for the staircase approximation.

V. RESULTS

For accurate numerical validation, the open round
step-index dielectric waveguide is used as the basis for
comparison due to its relatively simple and unambiguous
numerics 1 analysis. Analysis of the waveguide by the
variational methods described here and in [1] involves two
approximations. The first is the presence of the PEC box
enclosing the structure, and. the second is that the round
waveguide must be modeled with a staircase approxima-
tion. The perturbation by the box is minimized by placing
it a sufficient distance from the dielectric waveguide so
that its effect is negligible. The box compresses the fields
slightly, resulting in more field residing in the dielectric,
and causes an increase in the propagation constant. Larger
increases occur at lower frequencies and for higher-order
modes as tlhe exponential tail extends over a greater
distance for these cases resulting in more compression.

A sample staircase approximation for the round wave-
guide is shown in Fig. 3, where 74 rectangles are used.
For the numerical results below, 122 rectangles are used
(making a plot unreadable) resulting in a 0.0497% error
in the modeled dielectric area compared to the actual
area. In the numerical analysis, the basis set of modes do
not include terms with sufficiently high spatial-frequency
content to resolve the jagged boundary, so the close
match in areas results in negligible error for the propaga-
tion and attenuation constants. It is worth noting that the
matrix size is independent of the number of rectangles
used, so the computation time is only weakly linked to the
number of rectangles.

Shown in the inset in Fig. 4 is the structure analyzed to
obtain thle following results. For the variational methods,
the staircase approximation discussed above is used. For
comparison, the open structure is analyzed using the
exact eigenvalue equation as given, for example, in [12].
Since the loss tangent is included in each analysis, both
perform non-perturbational loss calculations.
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TABLE I
TOTAL NUMBEROF MODES FORCONVERGENCEANALYSIS

Lxor L, #HRW Modes

4
6
8

10
12
14
16
18
2,fJ

6
12
20
30
42
56
72
90

110

Propagation and attenuation constant convergence plots
for the HE1l mode at 130 GHz for both the E, /H< and

the Ex /EY /HY /Hv formulations are shown in Fig. 4.
Since the structure is square, equal numbers of basis
functions are included for each direction. The total num-
ber of modes, hence the matrix size, utilized in the
solutions are listed in Table I since they cannot be easily
calculated from the mode limits due to selective mode
inclusion. Symmetry in each direction is fully exploited.

The propagation constant results in Fig. 4(a) show
rapid convergence to a stable result for both techniques.
Comparison with the open structure shows the expected
slightly greater value for the propagation constant for the
closed structure. The E=\Hz formulation incurs about
twice the error as the Ex \Ev /Hx /Hy formulation, so
although the actual change due to the PEC box is un-
known, it appears that the E=/H: formulation incurs an
offset in excess of the actual amount. This excess leads to
the conclusion that the E, /Hz formulation as imple-
mented in [1] suffers from relative convergence [13].

The attenuation constant results in Fig. 4(b) demon-
strate the underlying behavior of the E=\Hz formulation.
In contrast to the Ex \Ey /Hx /Hy formulation, which
achieves good convergence to an accurate and stable
result, the E=/H= formulation demonstrates good con-
vergence up to LX = LY = 10 where the solution takes a
radical turn. With Lx = Ly = 12, cutoff modes of the
HRW are introduced into the basis set for the first time.
As discussed in Section II, cutoff HRW modes have
different phase relationships between components than
do the propagating modes. Numerically, the E, /H= for-
mulation adjusts for the poor phase match by shifting •~
to describe a very Iossy dielectric. This effect is shown in
Fig. 5, where the real part is not much affected by the
inclusion of cutoff HRW modes whereas the imaginary
part jumps by several orders of magnitude (note the scale
change in Fig. 5(b)). The complex propagation constant
for the HRW modes resulting from the Iossy material
induces phase relationships to compensate for the incom-
pleteness of the basis functions. In contrast, the
E., /Ey /H.y \Hv formulation demonstrates smooth con-
vergence in CRto a stable result.

The problems demonstrated in Fig. 4(b) in calculating
the attenuation constant using the E, /H= formulation
contrasts sharply with the success in attenuation constant
calculation in [1]. There, the attenuation of an image line

with c. = 1 and variable tan 6 is used to validate the
attenuation calculation with very good success. The suc-
cess is due to the fact that this particular IRW is very
similar to the HRW for the range of tan 8‘s employed, so
the error introduced by the incomplete basis set is very
small. This over-simplified test case leads to a false vali-
dation of the method. The use of a realistic waveguide for
all validations below for the Ex /Ey / H, /Hv formulation
yields a solid verification of the method.

The E. /EY /HX /Hv formulation is fully verified with
the results in Fig. 6. The convergence curves in Fig. 4
show that convergence is reached for Lt = Ly = 14 at 130
GHz for the H-Ell mode. Convergence depends on the
ability of the basis functions to model the spatial distribu-
tion of the field structure. So convergence is also achieved
for frequencies and modes with similar spatial distribu-
tions. For the results in Fig. 6, all results are calculated
with Lx = Lv = 20, with one exception discussed below.
This selection ensures convergent results for all frequen-
cies covered and for all modes with a similar field struc-
ture. The exception mentioned is for the HE1l mode for
80-110 GHz. The lower frequencies induce a greater
spread in the fields,, resulting in less need for high
spatial-frequency content to model them. These results
were computed with L, = L ~ = 18 to avoid the numerical
difficulties induced by including the unnecessary high
spatial-frequency terms. This effect is evident in the nu-
merical data used to make Fig. 4, but the effect is not
large enough by Lx = Ly = 20 to be visible in the plot.

The propagation constant results of Fig. 6(a) show
accurate results for the HEl ~ mode with diminishing
agreement with reduced frequency as the PEC box has a
greater effect. The TEO1 mode shows good agreement
regardless of frequency. Accuracy similar to the HE1 ~
mode should be achieved due to the similar spatial extent.
This is observed at higher frequencies as expected, but
the decrease in accuracy due to the PEC box is not
observed as expected. The TA401mode is not shown as it
is nearly degenerate with the TE(jl mode and would
unnecessarily confuse the figure. Accuracy and trends are
similar to the HE21 mode. The HE71 mode shows re-
duced agreement, but this is expected as it has roughly
twice the spatial-frequency content as the HE1l mode. To
achieve results for the HE21 mode that are convergent to
the same level as the HE1 ~ mode, it would be necessary to
require at least L.r = L} = 28 (twice the HE1l value of
14).

The attenuation constant results shown in Fig. 6(b)
show excellent agreement at all frequencies. Note that the
attenuations are similar for each mode, so an offset scale
is used to separate the curves. Again, similar results were
obtained for the TMO1mode.

The method demonstrated excellent numerical stability.
In no cases were spurious modes observed. The complex
root search for ~~ typically required six to eight iterations,
of which three were required to begin the root search. In
all cases, over ten orders of magnitude reduction in the
derivative 8P /de~ were achieved in the root search. In no
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Fig. 4. Propagation and attenuation constant convergence cuwes for the H-Ell mode at 130 GHz. (a) Normalized
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cases were secondary roots observed. As the number of
HRW modes included in the solution is increased, non-
physical solutions do appear; however, these solutions are
easily identified in the list ofeigenvalues since they have
gain instead of attenuation. Since the eigenvalues must be
sorted to find the one with the largest real part, the
non-physical solutions are easily removed in this process.

As an additional confirmation of the method and to
demonstrate its versatility, a graded-index waveguide is
analyzed. The structure that is analyzed is shown in inset
in Fig. 7. The dielectric constant of the substrate follows a

a
E

HE, L

-+

TED,
1.5% HE21

L 1.0
2 80 100 120 140 160 180 200

Frequency. GHz

(a)

HE,,

cj~
0’ 80 10IZ 120 140 160 180 200

Frequency. GHz

(b)

Fig. 6. Propagation and attenuation constant comparison between the
EX/EY/HX/HY formulation andtheopen structure eigenvalue results.
(a)Normalizedpropagation constant. (b) Attenuation constant in dB/m.
Note the offset scales.

Gaussian–Gaussian distribution according to

& = ~q + @=e-@’o)’e-(Y-Y o)’, (19)

where (xO, yO) is the location of the peak value. For the
inset figure, XO=2.25 mm, yO=3 mm, and the dielectric
constants are as labeled. To model the channel wave-
guide, 200 rectangles are used as shown in Fig. 8. The
dielectric constant of each rectangle is set to the value of
(19) calculated at its center.
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angular regions.

To determine the number of HRW modes needed to
model the IRW, several cases of increasing accuracy were
computed. Table II shows the results at V = 19 for the
effective dielectric constant, where V is the normalized
frequency. Note that Ly > Lx since the y-direction in-
cludes a step discontinuity. The total number of HRW

TABLE II
EFFECTIVEDIELECTRICCONSTANTRESULTSAT V =19 FOR

VARYTNGBASIS SET SIZE

Lx L, #HRW Modes H;l H;l H;!
—. .—

10 14 95 2.205 2.173 2.172
12 16 126 2.208 2.178 2.17’7
14 18 161 2.210 2.181 2.180
16 20 200 2.211 2.183 2,182

-modes used, and hence the matrix size, is given iu the
third column. Symmetry is exploited to reduce the num-
ber of modes used. Note that for all practical purposes,
all of the results are equally accurate and the smallest
matrix size could be used for generating data. However,
for comparison with previous work, a normalized fre-
quency is used that requires extreme accuracy to achieve
good agreement, so for the computation of all following
data, L,= 116and L,= 20.

The dispersion curves of Fig. 7 show a comparison
between the results computed with the optimizing
Rayleigh-R.itz technique and with two other methods.



1844 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39.NO. 11.NOVEMBER 1991

The normalized propagation constant is given by

i-) .

P’
kO – ‘r

B=
Em,x — Er ‘

where CM.X= 2.25 for this work. Due to the subtraction,
this definition emphasizes the less significant digits. The
normalized frequency is given as V = dkO, k. = w G.
Note that all results required 6 iterations in the complex
root search, including the three required to start the
search, and that in no instances were multiple roots or
spurious modes observed. The agreement between this
method and previous work is quite good. This method
tends towards better agreement with [14] at lower fre-
quencies and with [15] at higher frequencies.

VI. CONCLUSION

The paper details a variational formulation that utilizes
the modes of an optimized homogeneous rectangular
waveguide to model the modes of an inhomogeneous
rectangular waveguide. The specific implementation dis-
cussed is shown to make accurate non-perturbational
propagation and attenuation constant calculations for
closed dielectric waveguides for the dominant and
higher-order modes. This work represents a new formula-
tion of a previously described method that improves on
the previous work by using a complete set of basis func-
tions. It is shown that an E=/H= formulation of the
homogeneous waveguide modes leads to a relative con-
vergence phenomena and to incorrect loss calculations.
The improved formulation uses an EX \EY /HX /Hv for-
mulation that shows no difficulties.

The accuracy of the method is verified by analyzing the
round step-index dielectric waveguide and comparing the
results to a direct solution of the eigenvalue problem for
the open case. Very good agreement is demonstrated for
non-perturbational calculations of the propagation and
attenuation constants for the dominant and three higher-
order modes. The results also show that the staircase
approximation required by the rectangular subdivision of
the waveguide does not introduce any numerical difficul-
ties or observable error. The computation time is only
weakly linked to the number of rectangular subregions.
An additional example demonstrates the ability to analyze
graded-index waveguides.

Numerical stability is excellent. Formulation as a stan-
dard eigenvalue problem allows the use of stable numeri-
cal algorithms, Although a complex root search is re-
quired, the function for which the root is needed is
available analytically. In addition, there is only one
root – required theoretically and verified numerically. Fi-
nally, the rectangular subdivision of the inhomogeneous
waveguide enhances numerical stability by allowing all
integrations to be performed in closed form.

The method is intended to compete with the finite-ele-
ment method for the analysis of closed dielectric wave-

guides. The variational technique described here is shown
to possess excellent accuracy, stability, and generality. In
addition, its use of entire-domain basis functions elimi-
nates the need for any sort of mesh or grid, resulting in an
implementation that is compact and very easy to use. The
maximum set of required information consists of the
structure itself, frequency, symmetry, desired solution
(usually the dominant mode, but not required), x- and
y-mode limits, and an initial guess. The latter two are
strong candidates for automation, where the theoretical
existence of only one root eliminates the uncertainty
associated with the initial guess, and the mode limits can
be set from physical considerations.

APPENDIX

The following four equations result from setting
dp /8A,J = O for A,j equal to EX,J, Ey,l, K,l, and H?,]

respectively. These results cover the general case of an
inhomogeneous permeability:

i
+ gXinhYjn(2ti2~R~ (x, y) b2/~2 – j2 – n2) akdy

L, Ly–l
772 ~a

+ ~ ~ E,.n — H(
ijhmgylrz

m=l n=O abWJR O 0

[

p(x, y)
+ 2mjgxL,ngY,n l–

PR

//
= 2/3HYzj Obo“gXI,hY,, dxdy,

i=O, l ,..., Ll; l; j=l,2,..., Z,Y (20)

i

.(2w2~R.(x, y)a’/~2 - i2 - m2) dxdy

—– – 2~Hr,,~b~ahX,igy,, dxdy,
00

i=l,2 L,. ... ~; j=o,l,..., Ly –1 (21)
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).(2ri2eR~(x, y)b2/~2 -j’ - n’) dxdy

—– – 2~EYij/b~”h.YiLgYIJ~dy,
00

i=l,2 L,. ... ~; j= O,l,..., Ll–l (22)

f ‘flHX.n=
~=1 n=()

ba

“H(
tihximgyjn

( Y))

+ 2nihX,~hYj. 1–
00

)

L.–l ‘,
+ mngXi.hYj. dxdy + ~ ~ HY.z~

~=1)~=1 a WER

“JbJ12imhx1mhyjn( E(u)-1)

)+-gXi~hyj.(20J2eRp(X, y)a2/r2 – iz – m2) dxdy

i=O,l ,..., Ll; l; j=l,2,..., Ly (23)

where

g~=cos(~)cos(~)

gyt.=cos(~)ms(?)

and CR and VR are the permittivity a.d permeability of
the HRW. Note that the complex number j = ~ ap-
pears nowhere in these results.

The required derivative d~ /d6~ can be found as

(24)

where, using a compact double-sum notation,

and
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